O rerio) larvae. J. Exp. Biol. 210, 1084?091 (2007). 25. Shepherd, I. Eisen, J. Improvement in the zebrafish enteric nervous system. Techniques Cell Biol. 101, 143?60 (2011). 26. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. Pack, M. Intestinal development and differentiation in zebrafish. Mech. Dev. 122, 157?73 (2005). 27. Ng, A. N. et al. Formation on the digestive method in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114?35 (2005). 28. Kuhlman, J. Eisen, J. S. Genetic screen for mutations affecting improvement and function of the enteric nervous technique. Dev. Dyn. 236, 118?27 (2007). 29. Field, H. A., Kelley, K. A., Martell, L., Goldstein, A. M. Serluca, F. C. Evaluation of gastrointestinal physiology utilizing a novel intestinal transit assay in zebrafish. Neurogastroenterol. Motil. 21, 304?12 (2009). 30. Rich, A. et al. Kit signaling is required for development of coordinated motility patterns in zebrafish gastrointestinal tract. Zebrafish. 10, 154?60 (2013). 31. Holmberg, A., Olsson, C. Holmgren, S. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 209, 2472?479 (2006). 32. Maeda, H. et al. Fluorescent probes for hydrogen peroxide primarily based on a nonoxidative mechanism. Angew. Chem. Int. Ed Engl. 43, 2389?391 (2004). 33. Niethammer, P., Grabher, C., Appear, A. T. Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates fast wound detection in zebrafish. Nature 459, 996?99 (2009). 34. Flores, M. V. et al. Dual oxidase within the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem. Biophys. Res. Commun. 400, 164?68 (2010). 35. Ha, E. M., Oh, C. T., Bae, Y. S. Lee, W. J. A direct part for dual oxidase in Drosophila gut immunity. Science 310, 847?50 (2005). 36. Rokutan, K. et al. Nox enzymes and oxidative strain within the immunopathology with the gastrointestinal tract. Semin. Immunopathol. 30, 315?27 (2008). 37. Erikstein, B. S. et al. Cellular tension induced by resazurin leads to autophagy and cell death by way of production of reactive oxygen species and mitochondrial impairment. J. Cell Biochem. 111, 574?84 (2010). 38. Yan, B. et al. Il-1beta and Reactive Oxygen Species Differentially Regulate Neutrophil Directional Migration and Basal Random Motility within a Zebrafish Injury-Induced Inflammation Model. J. Immunol. (2014). 39. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Solutions three, 281?86 (2006). 40. Field, H. A., Ober, E. A., Roeser, T. Stainier, D.253443-56-0 Chemical name Y.Formula of 2′,3′-Dideoxy-5-iodouridine Formation on the digestive system in zebrafish.PMID:23522542 I. Liver morphogenesis. Dev. Biol. 253, 279?90 (2003). 41. Cocchiaro, J. L. Rawls, J. F. Microgavage of zebrafish larvae. J. Vis. Exp. e4434 (2013). 42. Goldsmith, J. R., Cocchiaro, J. L., Rawls, J. F. Jobin, C. Glafenine-induced intestinal injury in zebrafish is ameliorated by mu-opioid signaling via enhancement of Atf6-dependent cellular anxiety responses. Dis. Model. Mech. six, 146?59 (2013). 43. Brock, C. et al. Opioid-induced bowel dysfunction: pathophysiology and management. Drugs 72, 1847?865 (2012). 44. Karnovsky, M. J. Roots, L. A “Direct-coloring” thiocholine system for cholinesterases. J. Histochem. Cytochem. 12, 219?21 (1964). 45. Behra, M. et al. Acetylcholinesterase is required for neuronal and muscular improvement within the zebrafish embryo. Nat. Neurosci. five, 111?18 (2002). 46. Sarter, M., Parikh, V. Howe, W. M. Phasic acetylch.